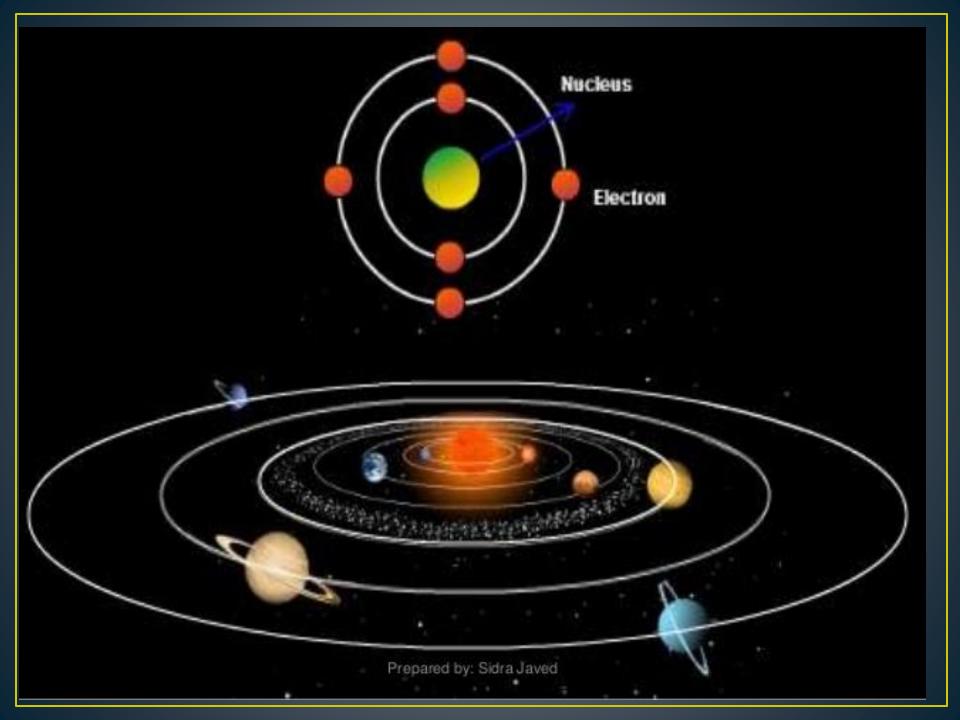
Atomic structure

Prepared by

Mukesh Kumar Mishra

Lecturer Chemistry

Government Polytechnic Vaishali


The Fundamental Particles

Particle	Charge (Coulomb)	Relative Charge	Mass (Kg)	Mass (a.m.u)	Found in:
Proton	+ 1.602 x 10 ⁻¹⁹	+1	1.6727 x 10 ⁻²⁷	1.0073	Nucleus
Neutron	0	0	1.6750 x 10 ⁻²⁷	1.0087	Nucleus
Electron	-1.602 x 10 ⁻¹⁹	-1	9.1095 x 10 ⁻³¹	5.4858 x 10 ⁻⁴	Outside Nucleus

After the Gold Foil Experiment Rutherford's proposed the Planetary Model of Atom.

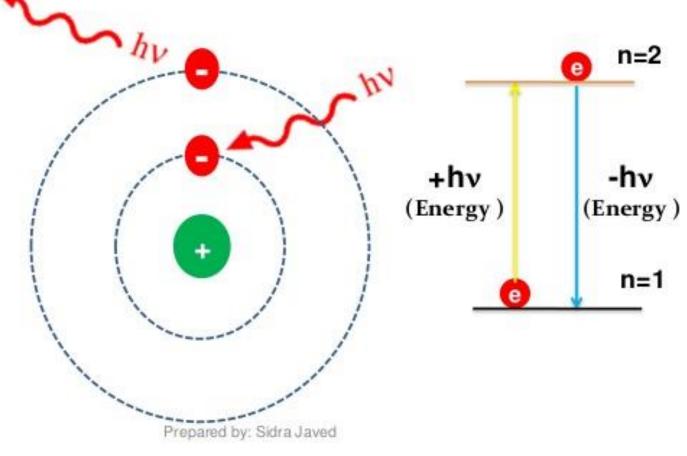
Nucleus lies in the center of the atom and electron revolves around it in their orbits

Prepared by: Sidra Javed

Neil Bohr, a Danish Physicist studied in Rutherford Laboratory since 1912.


He successfully explained the spectrum of hydrogen atom and presented Bohr's Atomic model.

He was awarded Nobel Prize in 1922

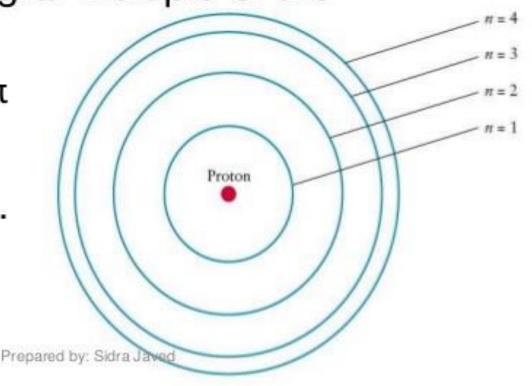

Prepared by: Sidra Javed

Bohr's Model of Atom

- 1- Electrons revolves around the nucleus in definite energy levels called orbits or shells in an atom without radiating energy.
- 2- As long as an electron remain in a shell it never gains or losses energy.

3- The gain or loss of energy occurs within orbits only due to jumping of electrons from one energy level to another energy level.

4- The angular momentum (mvr) of an electron is equal to $nh/2\pi$.


The angular momentum of an orbit depends upon its quantum number (n) and it is integral multiple of the

factor h/2π

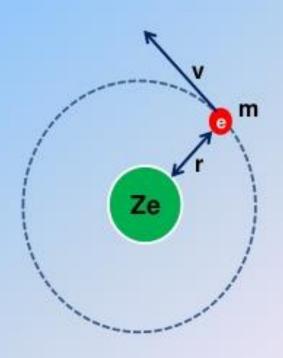
i.e. $mvr = nh/2 \pi$

Where,

n = 1, 2, 3, 4,...

Applications Of Bohr's Atomic Model

 Derivation of Radius of an Orbit of an atom


Derivation of Energy of an Orbit

Derivation of Wave Number (ū)

Derivation of Radius of an Orbit of an Atom

Consider an atom having an electron e moving around the nucleus having charge Ze where Z is the atomic number.

Let m be the mass, r the radius of the orbit and v, the velocity of the revolving electron.

According to Coloumb's law, the electrostatic force of attraction b/w nucleus and electron:

$$F_{c} = \frac{q_{1}q_{2}}{4\pi\varepsilon_{o}r^{2}} = \frac{Ze.e}{4\pi\varepsilon_{o}r^{2}}$$

$$= \frac{Ze^{2}}{4\pi\varepsilon_{o}r^{2}}$$

$$= \frac{4\pi\varepsilon_{o}r^{2}}{4\pi\varepsilon_{o}r^{2}}$$

Where \mathcal{E}_o is the vacuum permittivity constant ($\mathcal{E}_o = 8.84 \times 10^{-12} \text{ C}^2/\text{J.m}$)

Centrifugal force acting on the electron = $\frac{mv^2}{r}$

The two forces are equal and balance each other

According to Bohr's postulate:

Put value in eq(2).

$$r = \frac{Ze^{2}}{4\pi\varepsilon m} \times \frac{4\pi^{2}m^{2}r^{2}}{n^{2}h^{2}}$$

$$\frac{1}{1} = \frac{Ze^{2}\pi mr}{\varepsilon n^{2}h^{2}}$$

$$Ze^{2}\pi mr = \varepsilon n^{2}h^{2}$$

$$r = \frac{\varepsilon n^{2}h^{2}}{Ze^{2}\pi m}................................(5)$$

Prepared by: Sidra Javed

For Hydrogen atom, Z = 1

$$r = \frac{\varepsilon_{o}n^{2}h^{2}}{Ze^{2}\pi m}$$

$$r = \frac{\varepsilon_{o}n^{2}h^{2}}{(1)e^{2}\pi m}$$

$$r = \frac{\varepsilon_{o}n^{2}h^{2}}{\pi me^{2}}.....(6)$$

$$r = n^{2}a^{o}$$
Prepared by: Sidra Javed

Where a° is a constant quantity,

$$a^{o} = \frac{\varepsilon_{o}h^{2}}{e^{2}\pi m}$$

$$a^{o} = 0.529 \times 10^{-10} m$$

$$a^{o} = 0.529 \text{ A}$$

$$r = n^{2}.a^{o}$$

Derivation of Energy of an Electron in an Orbit

The energy of an electron in an orbit is the sum of its potential and kinetic energy

$$E_{T} = K.E + P.E$$

$$E_{T} = \frac{1}{2}mv^{2} + \left(-\frac{Ze^{2}}{4\pi\varepsilon_{o}r}\right).....(7)$$

$$E_{T} = \frac{1}{2}mv^{2} - \frac{Ze^{2}}{4\pi\varepsilon_{o}r}$$

From eq(1)
$$mv^2 = \frac{Ze^2}{4\pi\varepsilon^{\circ}r}$$

Putting value in eq (7)
$$E_T = \frac{Ze^2}{2.4\pi\varepsilon^{\circ}r} - \frac{Ze^2}{4\pi\varepsilon^{\circ}r}$$

$$E_n = \frac{Ze^2}{8\pi\varepsilon_{\circ}r} - \frac{Ze^2}{4\pi\varepsilon_{\circ}r}$$

$$E_n = \frac{Ze^2}{4\pi\varepsilon_{o}r} \left(\frac{1}{2} - 1\right)$$

$$E_n = \frac{-Ze^2}{8\pi\varepsilon_{pohared by: Sidra Javed}}....(8)$$

Now putting the value of r from eq(5) into eq(8),

$$E_n = \frac{-Ze^2}{8\pi\varepsilon_o} \times \frac{Ze^2\pi m}{\varepsilon_o n^2 h^2}$$

$$E_n = \frac{-Z^2 e^4 m}{8\varepsilon_o^2 n^2 h^2} \dots (9)$$

For Hydrogen atom; Z=1

$$E_n = \frac{-me^4}{8\varepsilon_o^2 n^2 h^2}$$

$$E_n = -\frac{me^4}{8\varepsilon_o^2 h^2} \left[\frac{1}{n^2} \right]$$

But
$$\frac{me^4}{8\varepsilon_o^2 h^2} = -2.178 \times 10^{-18} \text{J}$$

$$E_n = -2.178 \times 10^{-18} \left(\frac{1}{n^2}\right) \text{J}.....(10)$$

$$E_n = -\frac{k}{n^2}$$

where
$$k = 2.178 \times 10^{-18}$$

The negative sign indicated Decrease in energy of the electron. For 1 mol of electron, multiply by Avogadro's No.

$$E_n = -\left(\frac{k}{n^2}\right) \times 6.02 \times 10^{23} \text{ J/mol}$$

$$E_n = -\left(\frac{k}{n^2}\right) \times \frac{6.02 \times 10^{23}}{1000}$$
 KJ/mol

$$E_n = 1313.315 \left(\frac{1}{n^2}\right) \text{KJ/mol}$$

This energy is associated with 1.008 gramatoms of hydrogen.

Prepared by: Sidra Javed

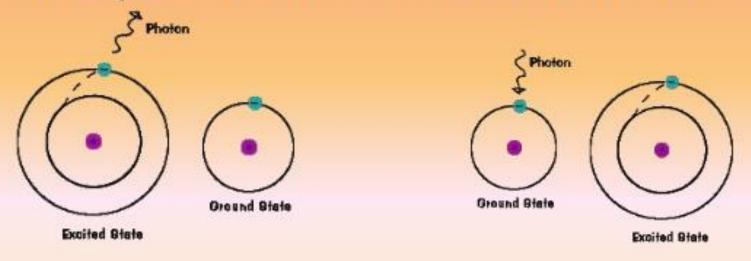
Derivation of Wave number

$$v = c \, \overline{\upsilon} \dots (14)$$

Where c is the velocity of Light Putting value of v from eq(13) into eq(14)

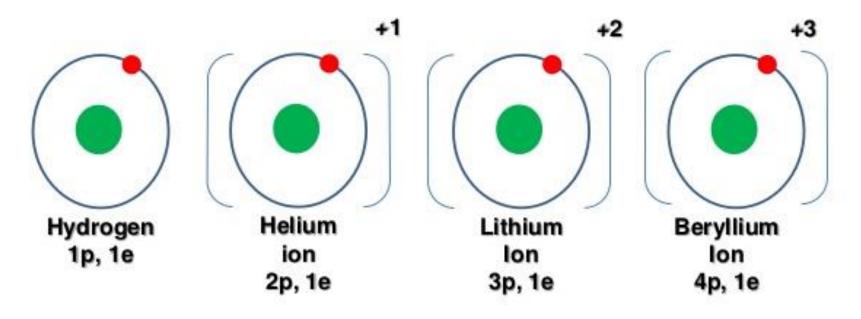
$$\overline{v}c = \frac{me^4}{8\varepsilon_o^2 h^3} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\overline{v} = \frac{me^4}{8\varepsilon_o^2 h^3 c} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \dots (15)$$

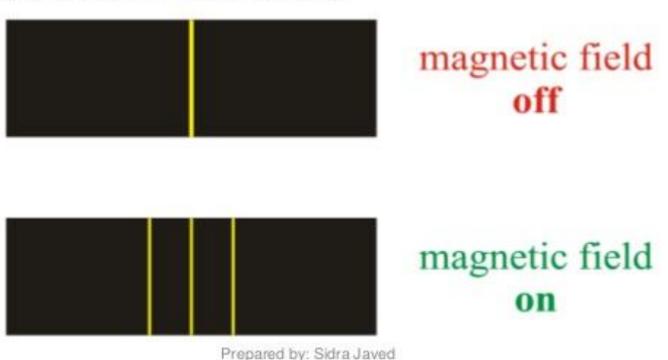

Putting values of constants, we get a factor called Rydberg's Constant, R.

$$\frac{me^4}{8\varepsilon_o^2 h^3 c} = R = 1.09678 \times 10^7 \,\mathrm{m}^{-1}$$

$$\vec{v} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \dots (16)$$

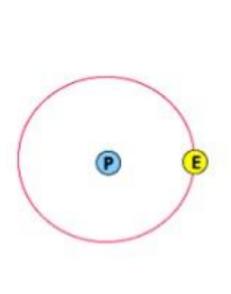

Defects of Bohr's Atomic Model

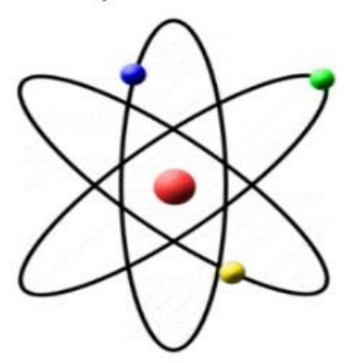
1- According to Bohr, the radiation results when an electron jumps from one energy orbit to another energy orbit, but he did not explained how this radiation occurs.



2- Bohr's theory explained the existence of various lines in H-spectrum, but it predicted that only a series of lines exist. Later on it was realized that the spectral lines that had been thought to be a single line was actually a collection of several lines very close to each other.

3- Bohr's theory successfully explained the observed spectra for H – atom and similar ions (He+1, Li+2, Be+3 etc) but it can not explained the spectra for poly electron atoms.




4- If a substance which gives line emission spectrum is placed in a magnetic field, the lines of the spectrum get split up into a number of closely spaced lines. This phenomenon is known as Zeeman effect. Bohr's theory has no explanation for this effect.

5- If a substance which gives line emission spectrum is placed in an external electric field, the lines of the spectrum get split up into a number of closely spaced lines. This phenomenon is known as **Stark effect**. Bohr's theory has no explanation for this effect as well.

6- Bohr suggested circular orbits of electron around the nucleus of H – atom but later it was proved that the motion of electron is not in a single plane, but takes place in three dimensional space.

7- Bohr's assumes that an electron in an atom is located at a definite distance from the nucleus and is revolving round it with definite velocity i.e. it has a fixed momentum.

This idea is not in agreement with **Heisenberg's** uncertainty principle which states that it is impossible to determine the exact position and momentum of a particle simultaneously with certainty.

The End

Prepared by: Sidra Javed